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We describe the theory of few Coulomb-correlated electrons in a magnetic quantum dot formed in graphene.
While the corresponding nonrelativistic �Schrödinger� problem is well understood, a naive generalization to
graphene’s “relativistic” �Dirac-Weyl� spectrum encounters divergencies and is ill defined. We employ Such-
er’s projection formalism to overcome these problems. Exact diagonalization results for the two-electron
quantum dot, i.e., the artificial helium atom in graphene, are presented.
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The recent spectacular progress in preparing and usefully
employing individual carbon monolayers of graphene1,2 con-
tinues to stimulate much interest across different scientific
communities, including material science, applied physics,
chemistry, condensed-matter physics and mathematics. Bal-
listic electronic motion with quantum coherence extending
over micrometer distances has been achieved in several ex-
periments �see, e.g., Ref. 3�. The low-energy physics close to
a single K point can then be described by a two-component
Dirac-Weyl Hamiltonian,2,4

H0 = vF� · �p −
e

c
A� , �1�

suggesting an easily accessible condensed-matter realization
of relativistic quantum mechanics. In Eq. �1�, � denotes the
vector of the first two Pauli matrices for the “isospin” encod-
ing the two sublattices, the Fermi velocity is vF�106 m /s,
and we include a static vector potential A�r� describing �pos-
sibly inhomogeneous� magnetic fields. Since graphene’s ef-
fective fine-structure constant is ��1, present interest has
also turned to Coulomb interaction effects.2 According to
recent Monte Carlo simulations5 and analytical arguments,6

sufficiently strong interactions may even open a sizeable
bulk gap in the Dirac fermion spectrum.

Here we study the properties of few Coulomb-correlated
electrons confined to a finite-size quantum dot formed in
graphene. Using electrostatically formed quantum dots in
semiconductor devices, such “artificial atoms” have been in-
tensely studied over the past two decades, both
experimentally7 and theoretically.8 In graphene dots formed
by electrostatic gating, however, carriers can usually escape
due to the �recently observed9� Klein tunneling phenomenon,
and only quasibound states may appear.10 An alternative is to
employ lithographically defined quantum dots,11 where de-
tailed information on ground- and excited-state properties
has been obtained from transport spectroscopy. Unfortu-
nately, the boundary of lithographically fabricated graphene
dots is rather disordered and difficult to model.12 On the
other hand, suitable and realizable inhomogeneous magnetic
fields can confine Dirac fermions,13,14 promising to yield tun-
able and well-defined magnetic graphene dots.

A more challenging difficulty to theory arises when trying
to generalize Eq. �1� to a first-quantized many-particle de-

scription. The first-quantized approach has turned out to be
very efficient and convenient for the case of Schrödinger
electrons in semiconductor-based artificial atoms.8 For the
“relativistic” graphene case, the problem arises from the un-
boundedness of Eq. �1�, in contrast to the corresponding
Schrödinger operator �p− e

cA�2 /2m�. While Eq. �1� can still
be used within effective single-particle approximations such
as the Hartree-Fock approach,15 variational schemes,16 or
density-functional theory,17 the full N-particle problem �for
small N�1� with Eq. �1� for the kinetic part suffers from the
so-called “Brown-Ravenhall disease.18,19” Roughly speaking,
the unbounded spectrum allows particles to lose arbitrary
amounts of energy by transferring their energy in �real� scat-
tering events to other particles. The resulting divergent den-
sity of states prohibits, for example, the direct use of exact
diagonalization �ED� methods. This difficulty of the Dirac
equation has been known for half a century.18 To “cure” this
“disease,” we follow a proposal by Sucher19 and confine the
Hilbert space to positive-energy eigenstates through suitably
defined projectors �cf. Eq. �5� below�. While we formulate
this approach for the magnetic dot only, the general concepts
remain applicable for almost arbitrary graphene dots. The
projection method then allows, for instance, to apply numeri-
cal techniques to the relativistic N-particle problem. In this
work, we present ED results for the many-body energy spec-
trum of the artificial helium atom �N=2� in graphene.

Let us first specify the model discussed here �we set
�=1�. In cylinder coordinates, we consider the spherical and
parabolic magnetic field profile oriented perpendicular to the
graphene plane �with A in symmetric gauge�,

B�r,�� =
c

e
�B

2 r2ez, A�r,�� =
1

4
�B

2 r3�− sin �

cos �

0
	 . �2�

The inverse length scale 
�B tunes the field inhomogeneity.
The dimensionless radial coordinate is �=r
�B, and energy
��� is measured in units of vF


�B. �Physical units are recov-
ered from 
B��� /Tesla= �vF


�B /26 meV��.� Such mag-
netic profiles can be generated with reasonable accuracy us-
ing suitable lithographically defined ferromagnetic films
deposited on top of the graphene layer after formation of a
protective oxide layer.20 Upper and lower components of
eigenspinors ��	

�0�� to Eq. �1� must then differ by one orbital
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angular-momentum quantum number �m� due to conserved
total angular momentum.13 With real functions 
m��� and
�m+1���, the radial part of ��	

�0�� is
��
m��� , i sgn����m+1����T, where Eq. �1� yields the radial
equations

� − � �� +
m + 1

�
−

�3

4

− �� +
m

�
−

�3

4
− � 	� 
m���

�m+1���
� = 0,

�3�

which cannot be solved analytically. We here carry out ED
calculations, later on including the Coulomb interaction, and
thus solve Eq. �3� numerically. It is convenient to employ the
standard Darwin-Fock states8 as complete orthonormal func-
tion set in two dimensions �2Ds� to expand 
m and �m+1 in
Eq. �3�. To reduce the number nmax of required basis func-
tions �for given m� when approximating the ��	

�0�� to the de-
sired accuracy, we have included a tunable width parameter
in the Darwin-Fock states. Figure 1 displays the resulting
eigenenergies as a function of the orbital angular momentum
m. As expected, the spectrum is electron-hole symmetric, and
for m
0, a zero-energy level develops. This zero-energy
level is nondispersing �precisely like a quantum Hall level�,
despite of the inhomogeneous magnetic field which implies
the nontrivial m dependence of all other energy levels. Note
that for the corresponding Schrödinger case with a parabolic
magnetic field, the zero-energy level is absent.

Next we consider N interacting electrons in such a
graphene dot. A naive approach is to consider the first-
quantized Hamiltonian

H = vF

j=1

N

� j · �p j − A�r j�� + 

i�j

�vF

�ri − r j�
, �4�

where the fine-structure constant is �=e2 / ��0vF�. For typical
substrate materials, the dielectric constant is �0�1.4–4.7,
resulting in ��0.6–2. We mention in passing that the
“Wigner molecule” regime21 seems out of reach in graphene

dots, since both the kinetic and the potential energy show
identical scaling when changing the density.22 Moreover, we
neglect the Zeeman term which is very small in graphene.14

Up to the spin and K-point indices,23 many-body spinors
then have 2N components. For the related Schrödinger dot
�HS�, confinement of electrons is usually achieved by a para-
bolic electrostatic potential,7 and the many-particle descrip-
tion analogous to Eq. �4� simplifies considerably owing to
the generalized Kohn theorem.24 According to this theorem,
HS=Hcm+Hrel separates into two commuting parts describ-
ing center-of-mass �Hcm� and relative �Hrel� motion. Then
Hcm is just a 2D harmonic oscillator, while Hrel contains all
Coulomb interaction effects. In addition, Hrel conserves an-
gular momentum, as does Hcm. Taking N=2 as example, in
effect only a one-dimensional quantum problem for the ra-
dial motion of Hrel remains to be solved. In contrast, Eq. �4�
does not benefit from Kohn’s theorem, and only the total
angular momentum remains conserved as dictated by isot-
ropy. Therefore, while the additional spinor structure already
increases the rank of the Hamiltonian matrix in the Dirac
case by a factor 2N, the rank grows even more severely be-
cause neither Hcm nor a conserved angular momentum of Hrel
can be separated off the problem. For N=2 �graphene he-
lium�, we needed up to nmax=14 states to reach sufficient
accuracy. In addition, contrary to the Schrödinger problem,
particles may now exchange relative angular momentum �m
through the interaction. Owing to the exponential decay of
Coulomb matrix elements with ��m�, it is sufficient to take
��m��3, yielding an additional factor 7N−1 to the matrix size
�for N particles�. For N=2, we then need to include
142�7�22=5488 product basis states in total.

Let us then address the more fundamental difficulty aris-
ing already for N=2 when naively using Eq. �4�. A closely
related problem has been pointed out by Brown and
Ravenhall18 in a relativistic treatment of the helium atom: the
Dirac equation analogous to Eq. �4� does not possess normal-
izable antisymmetric eigenstates in the two-particle Hilbert
space. This failure has its origin in the unbounded spectrum
of the Dirac Hamiltonian, which allows for unlimited energy
exchange among the particles. As a result, the density of
two-particle states increases with Hilbert-space dimension
and ultimately diverges. This causes, e.g., divergent contri-
butions in second-order perturbation theory. In consequence,
neither the true Dirac equation nor the two-component vari-
ant �1� for graphene allow for naive many-particle generali-
zations such as Eq. �4�. To overcome this deficiency,
Sucher19 proposed to restrict the �antisymmetrized� product
Hilbert space to the positive-energy eigenspace for each par-
ticle by means of a suitable projector �+, having in mind the
original relativistic Dirac problem �e.g., for natural helium�
where a mass gap separates empty particle from filled anti-
particle states. The method is applicable when a finite-energy
gap separates the empty states �which can then be occupied
by the N electrons under consideration� from a filled sea
below the chemical potential �, as long as the interaction
strength does not exceed this gap. In a homogeneous 2D
graphene sheet, weakly interacting fermions are gapless so
that Sucher’s approach does not apply. On the other hand, for
finite-size quantum dots, such a gap is generally present. For
the case shown in Fig. 1, either �=0− or �=0+ are interest-
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FIG. 1. �Color online� ED results for the single-particle eigenen-
ergies � vs orbital angular momentum m in a parabolic magnetic
quantum dot in graphene �see Eq. �3��. The �=0 levels are indicated
as red filled circles, other levels are shown as black filled diamonds.
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ing candidates separating a filled Dirac sea from the levels on
which N additional particles may reside. Taking �=0−, they
enter the zero-energy level in Fig. 1, a situation closely re-
lated to previous ED studies for graphene dots with zigzag
boundary15,16 which used merely the zero-energy states as
basis. Although such an approximation avoids the Brown-
Ravenhall disease, it is not exact anymore. Their results can
then be systematically improved by Sucher’s method upon
including excited states. To be specific, we here consider two
electrons residing above a Dirac sea with �=0+ where all
negative- and zero-energy states are filled. Sucher’s projector
is thus expressed as

�+ = �+
�1�

� �+
�2�, �+

�j� = 

	�I

��	
�j,0����	

�j,0�� , �5�

where the sum is restricted to strictly positive single-particle
energies E	�I

�j,0��0 �for particle j=1,2� indexed by 	� I, see
Fig. 1, with corresponding eigenspinors ��	

�j,0��. With H in
Eq. �4�, the projected Hamiltonian HD=�+H�+ is well be-
haved and exhibits a finite density of two-particle states
which does not increase with Hilbert-space size. Throughout
the experimentally relevant regime, ��2, interactions are
not strong enough to induce a breakdown of this projection
approach.

We have carried out EDs of HD for N=2 using a two-
particle product basis of Darwin-Fock states. This basis has
the advantage of allowing to analytically express the matrix
elements of the two-particle interaction operator in Eq. �4� in
terms of finite sums and products, i.e., no quadratures nor
truncations of infinite sums are necessary; for the corre-
sponding �lengthy� expressions, see Ref. 25. Their numerical
evaluation involves taking small differences of huge num-
bers, the latter increasing as nmax! with the number of kept
Darwin-Fock states. We employed algorithms allowing for
number manipulations of arbitrary precision and used
30-digit accuracy. The resulting energy spectrum of artificial

helium in a magnetic graphene quantum dot is shown
in Fig. 2 for conserved total orbital angular momenta
M =m1+m2=−2,−1,0 ,1. These values include the ground
state for ��2. All levels rise when increasing the �repulsive�
interaction strength. This also holds true for the hole states
�not displayed in Fig. 2�, which, however, cross �=0 only for
��2. For ��2, interaction matrix elements indeed remain
much smaller than the energy difference ���2.981 65 be-
tween the lowest two-particle state �for M =−2 at �=0� and
the zero-energy level, a posteriori justifying Sucher’s ap-
proach here. Figure 2 reveals that states with larger total
angular momentum M, or higher excited states, tend to in-
crease less in energy with � as compared to the M =−2
ground state. This is a consequence of the larger spatial ex-
tent of excited-state wave functions, with a reduced Coulomb
repulsion between the electrons. Particularly striking is the
shallow increase of the lowest M =1 energy level, which
even becomes lower in energy than the M =−2 level for
��1.6. Approximating this level at �=0 by Darwin-Fock
levels, one of the two particles is seen to have m=2 for the
lower spinor component, cf. Eq. �3�, causing a significantly
larger spread of this part of the wave function compared to
M =−2,−1,0. Figure 2 also reveals nontrivial spin physics.
In the presence of interactions ���0�, doubly degenerate
noninteracting ��=0� energy levels will split into a spin-
triplet �S=1� state of lower energy and a spin-singlet
�S=0� state of higher energy, in accordance with Hund’s
rule. The triplet states are approximately �see below� Zeeman
degenerate. Singly degenerate �=0 levels, such as the
M =−2 ground state �for small ��, are S=0 states and remain
unsplit for ��0. Thus we expect singlet-triplet ground-state
spin transitions to occur within 0���2, as the one seen in
Fig. 2 at ��1.6.

Finally, we remark on optical transitions between the
many-body energy levels in Fig. 2. For the electrostatically
defined parabolic Schrödinger quantum dot, the generalized
Kohn theorem implies that Coulomb interactions can never
affect optical transitions because the dipole operator 
 j=1

N r j
acts exclusively on the eigenspace of Hcm. Therefore optical
spectra just reflect the harmonic excitations of the center-of-
mass motion.8 However, in our magnetic graphene dot,
Kohn’s theorem is ineffective and optical transitions between
different many-body levels in Fig. 2 are possible, thereby
allowing to optically probe interaction physics. Note that
magnetic fields are usually assumed homogeneous such that
photons cannot change the total spin S of the charged many-
particle system in electrical dipole transitions. While this
would prohibit all transitions between states with different S,
the inhomogeneous magnetic field here �slightly� mixes the
Sz=0 components of S=0 and S=1 levels. We estimate the
amount of this mixing by the variation of the Zeeman energy
across the spatial extent of the wave function compared to
the level separations of HD. As a first estimate, compare the
Zeeman energy �Z at the maximum of the charge-density
distribution with the orbital �Landau� energy �L at this point,
�Z /�L=g�BB /
2ecB�10−5
B /T. While this is small, the
Zeeman energy variations can easily exceed orbital level
separations near spin-singlet-triplet degeneracies, e.g., for
��1 or close to level crossings in Fig. 2, resulting in a
strong spin mixing. The corresponding transitions are then
optically allowed.
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FIG. 2. �Color online� ED results for the energy spectrum of
graphene artificial helium vs fine-structure constant � for different
total angular momenta M. States with M =−2 are shown as black
solid, M =−1 as blue dashed, M =0 as green dot-dashed, and
M =1 as red dotted curves.
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To conclude, we have presented the theory of few inter-
acting electrons in a �magnetically confined� graphene quan-
tum dot. The low-energy spectrum of graphene suggests that
one can realize relativistic artificial atoms in this setting.
While a naive formulation encounters conceptual difficulties
related to the unboundedness of the Dirac Hamiltonian, by
virtue of Sucher’s projection operator approach, a consistent
and accurate theory can be given. We have presented ED
results for the energy spectra of artificial helium, where we

predict singlet-triplet ground-state spin transitions to occur
for ��2. Moreover, the reported many-body levels can be
experimentally probed by optical spectroscopy.
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